
ARMY RESEARCH LABORATORY

Effects of Loop Unrolling and
Loop Fusion on Register Pressure

and Code Performance

by Dale Shires

ARL-TR-1386 June 1997

19970630 142

Approved for public release; distribution is unlimited.

DTTC QUALITY IM SPECIES 3.

The findings in this report are not to be construed as an offidal
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer need. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1386 June 1997

Effects of Loop Unrolling and Loop Fusion
on Register Pressure and Code Performance

Dale Shires
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Many of today's high-performance computer processors are super-scalar. They can dispatch
multiple instructions per cycle and, hence, provide what is commonly referred to as
instruction-level parallelism This super-scalar capability, combined with software pipelining, can
increase processor throughput dramatically. Achieving maximum throughput, however, is
nontriviaL Compilers must engage in aggressive optimization techniques, such as loop unrolling,
speculative code motion, etc., to structure code to take full advantage of the underlying computer
architecture. The phase-ordering implications of these optimizations are not well understood and
are the subject of continuing research. Of particular interest are optimizations that enhance
instruction-level parallelism. Two of these are loop unrolling and loop fusion. These are
source-level optimizations that can be performed by either the programmer or the compiler.
These optimizations have dramatic effects on the compiler's instruction scheduler. Performed too
aggressively, these optimizations can increase register pressure and result in costly memory
references. This paper details experiments performed to measure the effects of these source-level
code transformations and how they influenced register pressure and code performance.

u

Contents

1 Introduction and Problem Statement 1

2 Experimental Methodology 2

3 Results 2
3.1 Loop Unrolling 2
3.2 Loop Fusion 5

4 Conclusion 6

References 7

A Loop Unrolling Examples 9

B Loop Fusion Examples 13

C Loop Unrolling Pipeline Success Messages 17

D Loop Fusion Pipeline Success Messages 19

Distribution List 21

Report Documentation Page 23

in

INTENTIONALLY LEFT BLANK

IV

1 Introduction and Problem Statement

Modern high-performance computer platforms are capable of achieving incredible levels
of code execution speed. One way they increase performance is by taking advantage of
parallelism found in algorithms. To this end, many of these systems offer multiprocessor
parallelism. Furthermore, many also offer software pipelining to take full advantage of low-
level, or code-level, parallelism [1]. This is parallelism actually present in the way machine
instructions are dispatched.

Also of paramount importance is that these machines take full advantage of their com-
plicated memory systems. Most of the standard optimization techniques will really only
provide maximum performance if the computer's memory system is being used in an efficient
manner. Most shared-memory architectures have some type of memory hierarchy. The main
reason memories are implemented in this fashion is to optimize the price-performance ratio,
given the widening gap between central processing unit (CPU) speed and main memory
performance. CPU speeds are currently doubling about every 2 or 3 years while the speed
of main memory has historically doubled only about every decade. These tiered memories,
with their nondeterministic behavior, are hard to manage and predict. This makes the job
of the compiler's code generator that much more difficult. Memory systems have become
so complicated on some architectures that slight memory reference changes on codes may
speed up or slow down execution by an order of magnitude.

Since registers provide fast data access, one goal of the compiler back end is to allocate
and assign registers in an effective manner. The register allocator tries to assign a register to
each register candidate. Since register access is very fast, the compiler should generate code
that reuses these assigned registers as much as possible. To do this, the register allocator
and scheduler should work closely together [2]. This is actually a very complicated phase-
ordering problem. At the least, the scheduler should order code in a way that instruction-
level parallelism can be exploited, and the register allocator should give top priority to
assigning a register to frequently used variables. Several source-level optimizations can be
performed with the goal of increasing memory locality and instruction-level parallelism and
thus assisting the code generator.

The problem, however, is that when these optimizations are pursued too aggressively,
they can reach a point of diminishing returns. When the compiler starts to run out of
available registers to use, register pressure is said to be high. At the point where registers
are no longer available, the register allocator must actually "spill" a register's content to
memory to free it for other uses [3]. On tiered memory machines, such an action can be
detrimental to varying degrees. If the value is written to cache, the access time is very
small, but the cache manager may still have to invalidate the cache line. This operation
can cause the cache line to be rewritten to main memory. Actual main memory access
can be very expensive. On the Silicon Graphics (SGI) Power Challenge architecture, this
delay, though seldom reaching this point, can be as high as 90 cycles. Accordingly, the
governing hypothesis for this study is that memory locality and code-level, parallelism-
enhancing transformations are beneficial only to the point where register pressure becomes
very high.

2 Experimental Methodology

The example codes listed in this paper were all run on the SGI Power Challenge architecture.
This is a 64-bit architecture using 75-MHz MIPS R8000 processors. There are 32 64-bit
floating-point registers available to the assembler. The architecture is superscalar and can
dispatch up to four instructions per cycle. Prefetching is not implemented in the Power
Challenge architecture. This machine uses a hierarchical memory structure like the one
described previously.

Loop unrolling and loop fusion were the two transformations that were studied in this
experiment. These are common transformations, and loop unrolling especially is the most
heavily used transform to increase instruction-level parallelism. All programs were writ-
ten in C and were compiled with the SGI MlPSpro compiler version 6.0.2. Two compile
options were used. The first was -02, which turns on extensive optimization. These opti-
mizations are conservative in that they almost always provide some speedup and maintain
floating-point accuracy. The second was -03, which is aggressive optimization. The main
consequence of -03 optimization is that it turns on software pipelining. The code scheduler
attempts to pipeline innermost loops whenever possible.

A discovery made halfway through these trials led to a small change in the analysis of the
results. In version 6.0.1 of the compiler system (running at the University of Delaware), the
pipeline scheduler would give up if it could not generate a schedule without register spilling.
The newer version of the compiler (running at the Army Research Laboratory), however,
will still schedule pipelined loops with spill code introduced. The general hypothesis remains
the same. The new twist is that spilling will limit pipelining usefulness.

3 Results

3.1 Loop Unrolling

Loop unrolling replicates the body of a loop some number of times known as the unrolling
factor. Loop unrolling has the ability to increase performance in two ways. First, it reduces
loop overhead by performing less compare and branch instructions. Second, it increases work
performed in the resulting larger loop body by allowing more opportunity for optimization
and register usage. Most of the increase in performance speed on the SGI is because
multiplication and addition instructions may be overlapped in the multiple instruction cycle.

A simple 2-D matrix multiply code fragment was used to test unrolling effects on the
R8000 processor. This code is listed in Appendix A. Four unrolled versions of the matrix
multiply were implemented in different functions. There is a caveat. The author does not
claim this code to be the best version of matrix multiply possible. Simply, the base version
is straightforward and provides a good example of unrolling for memory locality. Other
C codes with loop reordering and splitting will undoubtedly come closer in reaching near-
theoretical peak on the SGI architecture than these versions. The function MMJbasic is the
basic matrix multiply loop. The optimizer unrolled the inner loop four times when this was
compiled. The hand-coded unrolling of the other functions was performed on the outer and
middle loop nests. The exact unrolling can be seen in the code listing in Appendix A. The
optimizer did not unroll the inner loop in these cases.

Various data were collected during program execution. The results are displayed in Table
1. Column one lists the function name. Columns "-02" and "-03" list the run times of the
code compiled with the two flags, respectively. The rest of the columns pertain only to the
executable compiled with -03 optimization. "Cycles/Iteration" lists how many computer
cycles were required to perform one complete iteration of the inner loop. For instance,

Table 1: Matrix multiply performance and other statistics.

Function
Run Time (sec) -03 Compiled Executable
-02 -03 Cycles/Iteration FLOPS (%) Memory (%)

MM-basic 94.37 91.84 0.67 33 100
MM-unrolLl 20.17 14.59 0.58 85 71
MM.unroll_2 13.38 10.45 0.56 88 66
MM_unroll_3 14.23 14.28 0.67 74 44

in MM_unroll_2, both the outer and middle loops were unrolled four times. The inner loop,
therefore, actually completes 16 iterations each time it is executed. The scheduler reported
this loop to be pipelined with a steady-state of nine cycles per iteration. In this case, the
number reported in the table is derived from dividing the steady state number of cycles by
the total number of computations performed by one iteration of the inner loop. FLOPS
gives the compiler-calculated rate of floating-point operations per second based on the MIPS
R8000's ability to perform two such operations per cycle. Memory lists the percentage of
peak memory references achieved. The maximum is two each cycle.

As evident from the timing profiles, the function MM.basic is perhaps the worst way
of performing a matrix multiply. This poor performance results from the inefficient way
in which memory is being utilized. The best way to check on memory performance is
through profiling. Two profiling mechanisms are available on the SGI operating system:
prof and pixie. Comparison of their outputs tells on a procedure-by-procedure basis how
well the memory system is performing. Prof uses program counter sampling to collect data.
It interrupts the code periodically and records the location of the program counter. The
condensed prof output is listed as follows:

samples time (50 cum time (50 procedure (file)

28046 2.8e+02s(34.1) 2.8e+02s(34.1) MM.basic
18403 1.8e+02s(22.4) 4.6e+02s(56.6) MM_unroll_l
18236 1.8e+02s(22.2) 6.5e+02s(78.8) MM_uuroll_2
17263 1.7e+02s(21.0) 8.2e+02s(99.8) MM_unroll_3

In contrast, pixie instruments the code with counters at the beginning and end of basic
blocks. It counts only the number of cycles the program executes and does not account for
cache misses, bank conflicts, etc. The abbreviated pixie output is given as follows:

cycles (*/.) cum '/. sees instrns calls procedure (file)

14883848018(28.12) 28.12
12760324018(24.10) 52.22
12630242018(23.86) 76.08
12540096818(23.69) 99.77

198.45 29765772028
170.14 26840486028
168.40 26610363028
167.20 26484145228

1 MM.basic
1 MM_unroll_l
1 MM_unroll_2
1 MM_unroll_3

Optimizers can affect the accuracy of profiling. Therefore, the profiled executables were
created with optimizations disabled.

In the best case, pixie is reporting that MMJbasic should complete in about 198 seconds.
Prof is showing that it is taking about 280 seconds. This shows that the current structure
of the code is not working well with the memory system. The unrolled code fragments
dramatically illustrate the advantages of loop unrolling. In these cases, loop unrolling was
the means to achieve register (or loop) blocking. By unrolling the various loops, loads and
stores for several array elements were highly reduced. The memory system performed much
better, as evident from the run time as well as the closely matched times given in the prof
and pixie profiles.

Getting the maximum benefits from a compiler usually requires having a detailed knowl-
edge of the many optional flags to control the fine points in the compiling process. The
MlPSpro compiler is no different. With standard options, the compiler could not pipeline
the loop body for MM_unroll_3 because the loop body was too long. The compile option
-SWP:body_ins=250 was used to increase the maximum size of a loop body that would be
considered for software pipelining.

Loop unrolling led to great speed increases. Unrolling with pipelining allowed the basic
matrix multiply to execute at 33% efficiency. Without unrolling, efficiency is only around
10% of the maximum throughput. Loop unrolling with the goal of register blocking achieved
even greater results. The software pipeliner, which allows differing loop iterations to overlap,
was able to achieve speedup over standard -02 optimization in almost every case.

Unrolling does reach a point of maximum usefulness in these test cases. With each func-
tion, more and more unrolling was done in order to promote register reuse and instruction-
level parallelism. MM_unroll_2 has extensive unrolling but does not produce any spill code.
Implementation of MM_unroll_3 however, produces extensive spilling. A quick check of the
statistics reported in Table 1 graphically show that the point has been reached at which
unrolling is harming execution speed. For MM_unroll_3, the cycles/iteration is higher and
the FLOP rate is smaller than those figures reported for MM_unroll_2. The actual output
from the scheduler is listed next.1

#<swps> Not unrolled before pipelining
#<swps> 27 cycles per iteration
#<swps> 40 flops (74'/. of peak) (madds count as 1)
#<swps> 40 madds (74*/. of peak)
#<swps> 24 mem refs (44% of peak)
#<swps> 3 integer ops (5'/, of peak)
#<swps> 67 instructions (62*/, of peak)
#<swps> 32 fgr registers used.
#<swps> 29 restores introduced.
#<swps> 14 possible stall cycles
#<swps> 14 min possible stall cycles

As expected, register spilling does hurt the speed of execution in this case. A massive
amount of spills and restores has been added by the scheduler, and even pipelining cannot
hide the resultant delays.

In the pipeline message, there is a statement saying 14 possible stall cycles may exist.
Most stalls on this processor occur due to the floating-point unit and the integer unit of

1Complete pipeliner messages for the example codes are listed in Appendices C and D.

the CPU becoming unsynchronized. Several factors may lead to this occurrence. Indirect
addressing, such as a [b [i]], will cause the lookup of b [i] to complete before the load/store
can begin. Multidimensional arrays, prevalent in these examples, lead to similar problems.
These integer unit operations paired together with the many floating-point multiplication
operations may be the reason the compiler is warning of worst-case synchronization stalls.
How much of the degradation in MM_unroll_3 is attributable to stall cycles and how much
is attributable to spilling is hard to determine.

3.2 Loop Fusion

Loop fusion is a process where two or more adjacent loops are merged into a single loop.
Loop fusion has the potential to increase performance by reducing loop overhead and in-
creasing instruction-level parallelism.

A somewhat contrived example was used to test fusion on the R8000 processor. The
loops were deliberately designed to give variables long live ranges and hence to make things
as difficult as possible for the scheduler to achieve scheduling, not to mention pipelining,
without introduction of some spill code. The code is listed in Appendix B. The loops in the
NotFused function are named loopl, loop2, and loop3. Table 2 lists the execution results.

Table 2: Loop Fusion Performance and Other Statistics.

Function
Run Time (sec) -03 compiled executable
-02 -03 Cycles/Iteration FLOPS(%) Memory (%)

NotFused
loopl
loop2
loop3

Fused

0.97

0.67

0.81

1.26

18.0
11.0
11.0
48.0

33
68
68
43

100
95
95
53

If the loops are not pipelined, the fused loop does indeed outperform the three separate
loops. The multiple compare and branch instructions executed in the three loops can be
extremely costly because they often interfere with maximum instruction issue per cycle. In
this case, the reduction in loop overhead increased code speed by 1.4. The fused loops did
create a small amount of spill code, but the effects seem to be negligible compared to cycles
lost on compare and branch instructions.

For pipelining, however, the spill code seemed to cause a greater problem. The pipeliner
reported numerous potential problems:

#<swps> Not unrolled before pipelining
#<swps> 48 cycles per iteration
#<swps> 42 flops (437. of peak) (madds count as 1)
#<swps> 0 madds (0'/. of peak)
#<swps> 51 mem ref s (53'/. of peak)
#<swps> 6 integer ops (6'/. of peak)
#<swps> 99 instructions (51'/. of peak)
#<swps> 32 fgr registers used.
#<swps> 3 spills 5 restores introduced.

#<swps> 25 possible stall cycles
#<swps> 11 min possible stall cycles
#<swps> 26 min cycles required for resources
#<swps> 48 cycle schedule register allocated.
#<swps> 30 min cycles required for resources with additional memory refs.
#<swps> 30 min cycles required for recurrences with additional memory refs.

Stalls are once again present, and this time there is a warning about the number of cycles
required to deal with resources and recurrences with memory references. All of these prob-
lems seem to have a very bad cumulative effect on the final performance. This code was not
written with any regard to memory locality. The three loops taken separately and pipelined
performed fairly well, but could still not perform as well as the fused, nonpipelined loop.
The spill code in the pipelined fused loop has put extreme burdens on the memory system
and has caused a severe loss of performance.

4 Conclusion

To be of maximum usefulness, the scheduler of a compiler must be able to fully take into
account the extremely complicated memory systems in most of today's shared-memory,
high-performance computers. As has been shown from these examples, transformations
to increase memory locality as well as reduce loop overhead and promote instruction-level
parallelism can be extremely advantageous. They are, however, extremely interrelated, and
promoting one often takes place with the detriment of the other.

Is there a best choice for ordering these transformations or some way of knowing how
much of one to perform? Building such knowledge into the compiler will be very difficult.
Optimal scheduling is itself an NP-complete problem, and predicting memory system behav-
ior is difficult. Building extensive information about the memory system into the compiler
will undoubtedly greatly increase compile time and with the nondeterministic behavior of
the memory system still have the potential to not be totally accurate. Those codes worthy
of extensive analysis and optimization will probably be best served by having compilers that
generate detailed messages about the actions they took that will allow the programmer to
make more informed choices about optimizing source-level code structure. It seems that
only through profiling and modifying code by hand can maximum performance be achieved
on a per-architecture basis. Some general conclusions are noteworthy, however:

• Loop unrolling is very efficient at promoting instruction-level parallelism.

•

•

Loop fusion is very efficient at removing costly compare and branch instructions and
may be more efficient than pipelining in some cases.

Large loop bodies with somewhat random or erratic memory access patterns will
seldom benefit from pipelining. These loops will either be better off not pipelined or
distributed and then pipelined if possible.

• Codes written that take into account the memory system should in most cases benefit
from pipelining.

• Loop unrolling to promote register reuse is only efficient to just prior to the point
where spill code must be introduced.

References

[1] J. L. Lo and S. J. Eggers. Improving balanced scheduling with compiler optimizations
that increase instruction-level parallelism. In ACM SIGPLAN 1995, pages 151-162,
1995.

[2] C. Norris and L. Pollock. An experimental study of several cooperative register allocation
and instruction scheduling strategies. In MICRO 28. The 28th International Symposium
on Micro Architecture, November 1995.

[3] G. Chaitin, M. Auslander, and A. Chandra. Register allocation via coloring. In Com-
puter Languages, volume 6, pages 47-57. 1981.

INTENTIONALLY LEFT BLANK

A Loop Unrolling Examples

«include <stdio.h>
«include <stdlib.h>
♦include <sys/time.h>

«define N 1000
«define L 480
«define M 1000

double a[M][L], b[L][N], c[M][N];

void init() {
int i, j, k;

for (i=0; i<M; i++)
for (k=0; k<L; k++)
a[i][k] = drand48();

for (k=0; k<L; k++)
for (j=0; j<N; j++)
b[k][j] = drand48();

for (i=0; i<M; i++)
for (j=0; j<N; j++)

c[i][j] = 0.0;

void MM_basic() •{
int i, j, k;

StartTimerO;

for (j=0; j<N; j++)
for (k=0; k<L; k++)

for (i=0; i<H; i++)
c[i][j] = c[i][j] + a[i][k] * b[k][j];

StopTimerO;

printf("*/.f\n", c[l][l]);

>

void MM_unroll_l() {
int i, j, k;

StartTimerO;

for (j=0; j<N; j+=2)
for (k=0; k<L; k+=6)

for (i=0; i<H; i++) {
c[i][j+0] = c[i][j+0] + a[i][k+0] * b[k+0][j+0]
c[i][j+0] = c[i][j+0] + a[i][k+l] * b[k+l][j+0]
c[i][j+0] = c[i][j+0] + a[i][k+2] * b[k+2] [j+0]
c[i][j+0] = c[i][j+0] + a[i][k+3] * b[k+3] [j+0]
c[i][j+0] = c[i][j+0] + a[i][k+4] * b[k+4] [j+0]
c[i][j+0] = c[i][j+0] + a[i][k+5] * b[k+5] [j+0]

c[i][j+l] = c[i][j+l] + a[i][k+0] * b[k+0][j+l];

c[i][j+l] = c[i][j+l] + a[i][k+l] * b[k+l] [j+1]
c[i][j+l] = c[i][j+l] + a[i][k+2] * b[k+2] [j+1]
c[i][j+l] = c[i][j+l] + a[i][k+3] * b[k+3] [j+1]
c[i][j+l] = c[i][j+l] + a[i][k+4] * b[k+4][j+l]
c[i][j+l] = c[i][j+l] + a[i][k+5] * b[k+5][j+l]

StopTimerO ;

printf('7.f\n", c[l][l]);

}

void MM_unroll_20 {
int i, j , k;

StartTimerO;

for (j=0; j<K; j+=4)
for (k=0; k<L; k+=4)

for (i=0; KM; i++) {
c[i][j+0] = c[i][j+0] + a[i][k+0] * b[k+0][j+0]
c[i][j+0] = c[i][j+0] + a[i][k+l] * b[k+l][j+0]
c[i][j+0] = c[i][j+0] + a[i][k+2] * b[k+2][j+0]
c[i][j+0] = c[i][j+0] + a[i][k+3] * b[k+3][j+0]

c[i][j+l] = c[i][j+l] + a[i][k+0] * b[k+0][j+l]
c[i][j+l] = c[i][j+l] + a[i][k+l] * b[k+l] [j+1]
c[i][j+l] = c[i][j+l] + a[i][k+2] * b[k+2][j+l]
c[i][j+l] = c[i][j+l] + a[i][k+3] * b[k+3][j+l]

c[i][j+3] = c[i][j+3] + a[i][k+0] * b[k+0] [j+3]
c[i][j+3] = c[i][j+3] + a[i][k+l] * b[k+l] [j+3]
c[i][j+3] = c[i][j+3] + a[i][k+2] * b[k+2] [j+3]
c[i][j+3] = c[i][j+3] + a[i][k+3] * b[k+3][j+3]

StopTimerO;
printf('7.f\n", c[l][l]);

void MM_unroll_3() {
int i, j, k;

StartTimerO;

for (j=0; j<N; j+=10)
for (k=0; k<L; k+=4)

for (i=0; i<M; i++) {
c[i][j+0] = c[i][j+0] + a[i][k+0] * b[k+0][j+0];
c[i][j+0] = c[i][j+0] + a[i][k+l] * b[k+l][j+0];
c[i][j+0] = c[i][j+0] + a[i][k+2] * b[k+2][j+0];
c[i][j+0] = c[i][j+0] + a[i][k+3] * b[k+3][j+0];

c[i][j+l] = c[i][j+l] + a[i][k+0] * b[k+0][j+l];

10

c[i][j+l]
c[i][j+l]
c[i][j+l]

c[i][j+2]
c[i][j+2]
c[i][j+2]
c[i][j+2]

e[i][j+3]
c[i][j+3]
c[i][j+3]
c[i][j+3]

c[i][j+4]
c[i][j+4]
c[i][j+4]
c[i][j+4]

c[i][j+5]
c[i][j+5]
c[i][j+5]
c[i][j+5]

c[i][j+6]
c[i][j+6]
c[i][j+6]
c[i][j+6]

c[i][j+7]
c[i][j+7]
c[i][j+7]
c[i][j+7]

c[i][j+8]
c[i][j+8]
c[i][j+8]
c[i][j+8]

c[i][j+9]
c[i][j+9]
c[i][j+9]
c[i][j+9]

c[i] [j+i]
c[i] O+i]
c[i 1 O+i]

c[i 0+2]
cCi 0+2]
c[i 0+2]
c[i 0+2]

c[i 0+3]
c[i [j+3]
c[i" 0+3]
c[i 0+3]

c[i: 0+4]
c[i: 0+4]
c[i: [j+4]
c[i: 0+4]

c[i: 0+5]
c[i: 0+5]
cu: 0+5]
cu: 0+5]

cci: 0+6]
cci: 0+6]
cu: 0+6]
c[i: 0+6]

cu: 0+7]
cu: 0+7]
c[i: 0+7]
c[i: 0+7]

c[i: 0+8]
c[i: 0+8]
cu: 0+8]
c[i: 0+8]

c[i: 0+9]
c[i: 0+9]
cti: 0+9]
c[il 0+9]

+ a[i][k+l
+ a[i][k+2
+ a[i] [k+3!

+ a[i] [k+o:
+ a[i] [k+1
+ a[i][k+2
+ a[i] [k+3:

+ a[i] [k+o!
+ a[i][k+l!
+ a[i][k+2
+ a[i] [k+3;

+ a[i][k+o:
+ a[i][k+l
+ a[i] [k+2:
+ a[i][k+3:

+ a[i] [k+o:
+ a[i][k+l
+ a[i][k+2:
+ a[i][k+3:

+ a[i] [k+o:
+ a[i] [k+1
+ a[i][k+2:
+ a[i][k+3:

+ a[i] [k+o:
+ a[i] [k+i:
+ a[i] [k+2:
+ a[i] [k+3:

+ a[i] [k+o:
+ a[i][k+i:
+ a[i][k+2:
+ a[i][k+3:

+ a[i] [k+o:
+ a[i] [k+i:
+ a[i] [k+2:
+ a[i] [k+3:

* b [k+1] [j+i]
* b[k+2] [j+i]
* b [k+3] [j+i]

* b [k+0] 0+2]
* b [k+1] [j+2]
* b[k+2] [j+2]
* b[k+3] [j+2]

* b[k+0] [j+3]
* b[k+l] [j+3]
* b[k+2] [j+3]
* b[k+3][j+3]

* b[k+0][j+4];
* b[k+l][j+4];
* b[k+2] [j+4];
* b [k+3] [j+4];

* b [k+0] 0+5]
* b [k+1] [j+5]
* b[k+2] [j+5]
* b[k+3] [j+5]

* b [k+0] [j+6]
* b[k+1] [j+6]
* b[k+2] [j+6]
* b[k+3] [j+6]

* b [k+0] [j+7]
* b[k+1] [j+7]
* b[k+2] [j+7]
* b[k+3] [j+7]

* b [k+0] [j+8]
* b[k+l] [j+8]
* b[k+2][j+8]
* b[k+3] [j+8]

* b[k+0][j+9];
* b [k+1] [j+9];
* b[k+2] [j+9];
* b[k+3][j+9];

StopTimerO;

printf('7.f\n", c[l][l]);

}

mainO ■[
initO;
MM_basic();
MM_unroll_l();
MM_unroll_2();
MM_unroll_30;
}

11

INTENTIONALLY LEFT BLANK

12

B Loop Fusion Examples

»include <stdio.h>

«define N 1000

»define M 1000

double

double

double

double

double

double

double

double

double

double

double

double

xl[N]
x2[N]
x3[N]
x4[N]
x5[N]
x6[N]
x7[N]
x8[N]
x9[N]
xl0[N]
xll [N]
xl2[N]

double

double

double

double

double

double

double

double

double

double

double

double

yl[N]
y2[N]
y3DG
y4[N]
y5[N]
y6[N]
y7[N]
y8[N]
y9[N]
yl0[K]
yll[N]
yl2[N]

double
double

double
double

double

double

double

double

double

double

double

double

zlCH]
z2D0
z3[H]
z4[N]
z5[N]
z6[N]
z7[N]
z8[N]
z9[N]
Z10[N]
zll[N]
zl2[N]

double

double

double

double

double

double

double

double

double

al[N];
a2[N];
a3[N];
a4[N] ;
a5[N];
a6[N];
a7[t0;
a8[N];
a9[N];

double

double

double

double

double

double

blDOi
b2[N] ;
b3[N] ;
b4[N] ;
b5[N] ;
b6[N] ;

13

double cl [N];
double c2[N];
double c3[N];

void NotFusedO {
int i, j;

StartTimerO;

for (j=0; j<M; j++) {

/* loopl */
for (i=0; i<N; i++) {

x9[i] = x8[i] - xl[i];
xlO[i] = x7[i] - x2[i];
xll[i] = x6[i] - x3[i];
xl2[i] = x5[i] - x4[i];
y9[i] = y8[i] - yl[i];
ylO[i] = y7[i] - y2[i]j
yll[i] = y6[i] - y3[i];
yl2[i] = y5[i] - y4[i];
z9[i] = z8[i] - zl[i];
zlO[i] = z7[i] - z2[i];
zll[i] = z6[i] - z3[i];
zl2[i] = z5[i] - z4[i];
}

/* loop2 */
for (i=0; i<N; i++) {

al[i] = x9[i] + xlO[i] + xll[i] + xl2[i];
a2[i] = y9[i] + ylO[i] + yll[i] + yl2[i];
a3[i] = z9[i] + zlO[i] + zll[i] + zl2[i]j
a4[i] = x9[i] + xl2[i];
a5[i] = xlO[i] + xll[i];
a6[i] = y9[i] + yl2[i];
a7[i] = ylO[i] + yll[i];
a8[i] = z9[i] + zl2[i] ;
a9[i] = zlO[i] + zll[i];
>

/* loop3 */
for (i=0; i<N; i++) {

bl[i] = al[i] + a2[i] + xl[i] + x2[i] + x7[i];
b2[i] = a2[i] + a3[i] + x3[i] + x4[i] + y7[i];
b3[i] = a3[i] + al[i] + x5[i] + x6[i] + z7[i];
cl[i] = yl[i] + al[i];
c2[i] = y2[i] + a2[i];
c3[i] = y3[i] + a3[i];
}

}

StopTimerO;

printf('7.f\n", c3[l]);

} /* end NotFused */

void Fused() {
int i, j;

StartTimerO;

for (j=0; j<M; j++)

14

for (i=0; i<N; i++) {
x9[i] = x8[i] - xl[i];
xlO[i] = x7[i] - x2[i];
xll[i] = x6[i] - x3[i];
xl2[i] = x5[i] - x4[i];
y9[i] = y8[i] - yl[i];
ylO[i] = y7[i] - y2[i];
yll[i] = y6[i] - y3[i];
yl2[i] = y5[i] - y4[i];
z9[i] = z8[i] - zl[i];
zlO[i] = z7[i] - z2[i];
zll[i] = z6[i] - z3[i];
zl2[i] = z5[i] - z4[i];
al[i] = x9[i] + xiO[i] + xll[i] + xl2[i];
a2[i] = y9[i] + ylO[i] + yll[i] + yl2[i];
a3[i] = z9[i] + zlO[i] + zll[i] + zl2[i];
a4[i] = x9[i] + xl2[i];
a5[i] = xlO[i] + xll[i];
a6[i] = y9[i] + yl2[i];
a7[i] = ylO[i] + yll[i];
a8[i] = z9[i] + zl2[i];
a9[i] = zlO[i] + zll[i];
bl[i] = al[i] + a2[i] + xl[i] + x2[i] + x7[i];
b2[i] = a2[i] + a3[i] + x3[i] + x4[i] + y7[i];
b3[i] = a3[i] + al[i] + x5[i] + x6[i] + z7[i];
cl[i] = yl[i] + al[i];
c2[i] = y2[i] + a2[i]
c3[i] = y3[i] + a3[i]
}

StopTimerO;

printf('7.f\n", c3[l]);

} /* end Fused */

mainO {

NotFusedO;
FusedO;

> /* end main */

15

INTENTIONALLY LEFT BLANK

16

C Loop Unrolling Pipeline Success Messages

#<svps>

#<svps> Pipelined loop line 23 steady state

#<swps>

#<swps> 4 unrollings before pipelining

#<svps> 2 cycles per 4 iterations

#<swps> 0 flops (07. of peak) (madds count as 2)

#<svps> 0 flops (0'/. of peak) (madds count as 1)

#<swps> 0 madds (0% of peak)

#<swps> 4 mem refs (100'/. of peak)

#<swps> 2 integer ops (SO'/, of peak)

#<svps> 6 instructions (75'/. of peak)

#<svps> 0 short trip threshold

#<swps> 3 ireg registers used.

#<swps> 1 fgr register used.

#<swps>

#<swps>

#<s«ps> Pipelined loop line 36 steady state
#<swps>

#<swps> 4 unrollings before pipelining

#<swps> 6 cycles per 4 iterations

#<swps> 8 flops (337. of peak) (madds count as 2)

#<swps> 4 flops (337. of peak) (madds count as 1)

#<swps> 4 madds (337. of peak)

#<swps> 12 mem refs (1007. of peak)

#<ssps> 3 integer ops (257. of peak)

#<swps> 19 instructions (797. of peak)

#<swps> 2 short trip threshold

#<s«ps> 7 ireg registers used.

#<swps> 14 fgr registers used.
#<sups>

#<svps> 6 possible stall cycles

#<swps> 6 min possible stall cycles
#<ssps>

#<svps>

#<swps> Pipelined loop line 53 steady state
#<swps>

#<s«ps> Hot unrolled before pipelining

#<svps> 7 cycles per iteration

#<swps> 24 flops (857. of peak) (madds count as 2)

#<swps> 12 flops (857. of peak) (madds count as 1)

#<s«ps> 12 madds (857. of peak)

#<swps> 10 mem refs (717. of peak)

#<svps> 3 integer ops (217. of peak)

#<svps> 25 instructions (897. of peak)

#<svps> 4 short trip threshold

#<swps> 11 ireg registers used.

#<swps> 27 fgr registers used.

#<svps>

#<swps>

#<snps> Pipelined loop line 84 steady state
#<svps>

#<swps> Not unrolled before pipelining

#<swps> 9 cycles per iteration

#<s«ps> 32 flops (887. of peak) (madds count as 2)

#<svps> 16 flops (887. of peak) (madds count as 1)

#<svps> 16 madds (887. of peak)

#<swps> 12 mem refs (667. of peak)
#<svps> 3 integer ops (167. of peak)

•<svps> 31 instructions (86% of peak)

#<sups> 2 short trip threshold

#<swps> 7 ireg registers used.

17

#<swps> 32 fgr registers used.

#<swps>

#<swps> 8 min cycles required for resources

#<swps> 9 cycle schedule register allocated.

#<swps>

#<swps>

#<swps> Pipelined loop line 120 steady state

#<swps>

#<swps> Not unrolled before pipelining

#<swps> 27 cycles per iteration

#<swps> 80 flops (74'/. of peak) (madds count as 2)

#<svps> 40 flops (74'/. of peak) (madds count as 1)

#<sops> 40 madds (74'/. of peak)

#<sops> 24 mem refs (447, of peak)

#<svps> 3 integer ops (5'/. of peak)

#<swps> 67 instructions (62'/. of peak)

#<swps> 2 short trip threshold

#<swps> 7 ireg registers used.

#<svps> 32 fgr registers used.

#<s»ps>

#<svps> 29 restores introduced.

#<swps> 14 possible stall cycles

#<svps> 14 min possible stall cycles

#<swps>

18

D Loop Fusion Pipeline Success Messages

#<sups>

#<sups>

#<svps>

#<svps>

#<swps>

#<swps>

#<s«ps>

#<swps>

#<SWpS>

#<swps>

#<SHpS>

#<swps>

#<swps>

#<swps>

#<swps>

#<SWpS>

#<swps>

#<swps>

#<swps>

#<swps>

#<swps>

#<swps>

#<swps>

#<svps>

#<swps>

#<svps>

#<svps>

#<svps>

#<svps>

#<sups>

#<swps>

#<svps>

#<swps>

#<svps>

#<swps>

#<sops>

#<swps>

#<svps>

#<svps>

#<swps>

#<swps>

#<swps>

#<swps>

#<swps>

#<svps>

#<svps>

#<swps>

#<svps>

#<swps>

t<svps>

#<svps>

S<snps>

#<swps>

t<svps>

#<swps>

#<snps>

#<swps>

#<svps>

#<swps>

t<svps>

t<svps>

Pipelined loop line 75 steady state

Not unrolled before pipelining

18 cycles per iteration

(16'/. of peak)
(33*/. of peak)
(0'/. of peak)
(100X of peak)
(13'/. of peak)
(737. of peak)

12 flops (16'/. of peak) (madds

12 flops (33'/. of peak) (madds
0 madds

36 mem refs

5 integer ops

53 instructions

1 short trip threshold

9 ireg registers used.

21 fgr registers used.

18 possible stall cycles

18 min possible stall cycles

Pipelined loop line 90 steady state

Not unrolled before pipelining

11 cycles per iteration

count as 2)

count as 1)

(347. of peak)

(687. of peak)

(07. of peak)

(957. of peak)

(97. of peak)

(867. of peak)

15 flops (347. of peak) (madds

15 flops (687. of peak) (madds

0 madds

21 mem refs

2 integer ops

38 instructions

3 short trip threshold

17 ireg registers used.

29 fgr registers used.

10 possible stall cycles

10 min possible stall cycles

Pipelined loop line 102 steady state

Not unrolled before pipelining

11 cycles per iteration

count as 2)

count as 1)

15 flops

15 flops

0 madds

21 mem refs

2 integer ops

(347. of peak)
(687. of peak)
(07. of peak)

(957. of peak)
(97. of peak)

(madds

(madds

count as 2)

count as 1)

38 instructions (86% of peak)

3 short trip threshold

19 ireg registers used.

21 fgr registers used.

10 possible stall cycles

10 min possible stall cycles

Pipelined loop line 126 steady state

Not unrolled before pipelining

48 cycles per iteration

42 flops (21'/. of peak) (madds

42 flops (43'/. of peak) (madds

count as 2)

count as 1)

19

#<svps> 0 madds (0% of peak)

#<swps> 51 mem refs (537. of peak)

#<swps> 6 integer ops (67, of peak)

#<swps> 99 instructions (517, of peak)

#<swps> 1 short trip threshold

#<s»ps> 16 ireg registers used.

#<swps> 32 fgr registers used.
#<swps>

#<swps> 3 spills 5 restores introduced.
#<sups> 25 possible stall cycles

#<swps> 11 min possible stall cycles

#<swps>

#<s«ps> 26 min cycles required for resources

#<swps> 48 cycle schedule register allocated.

#<swps> 30 min cycles required for resources with additional memory refs.

#<swps> 30 min cycles required for recurrences with additional memory refs.

#<swps>

20

NO. OF
COPIES ORGANIZATION

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE0944
FT BELVOIR VA 22060-6218

1 HQDA
DAMOFDQ
DENNIS SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

1 CECOM
SP & TRRSTRL COMMCTN DIV
AMSEL RD ST MC M
H SOICHER
FT MONMOUTH NJ 07703-5203

1 PRIN DPTY FOR TCHNLGY HQ
USARMYMATCOM
AMCDCGT
MFISETTE
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 PRIN DPTY FOR ACQUSTNHQS
US ARMY MATCOM
AMCDCGA
D ADAMS
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 DPTY CG FOR RDE HQS
US ARMY MATCOM
AMCRD
BGBEÄUCHAMP
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 ASST DPTY CG FOR RDE HQS
US ARMY MATCOM
AMCRD
COL S MANESS
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

NO. OF
COPIES ORGANIZATION

1 DPTY ASSIST SCY FOR R&T
SARDTT F MILTON
THE PENTAGON RM 3E479
WASHINGTON DC 20310-0103

1 DPTY ASSIST SCY FOR R&T
SARDTT DCHAIT
THE PENTAGON
WASHINGTON DC 20310-0103

1 DPTY ASSIST SCY FOR R&T
SARDTT KKOMNOS
THE PENTAGON
WASHINGTON DC 20310-0103

1 DPTY ASSIST SCY FOR R&T
SARDTT BREISMAN
THE PENTAGON
WASHINGTON DC 20310-0103

1 DPTY ASSIST SCY FOR R&T
SARDTT TRILLION
THE PENTAGON
WASHINGTON DC 20310-0103

1 OSD
OUSD(A&TyODDDR&E(R)
JLUPO
THE PENTAGON
WASHINGTON DC 20301-7100

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1 DUSD SPACE
1E765 JGMCNEFF
3900 DEFENSE PENTAGON
WASHINGTON DC 20301-3900

1 USAASA
MOASAI WPARRON
9325 GUNSTON RD STE N319
FT BELVOIR VA 22060-5582

21

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

1 CECOM
PMGPS COLS YOUNG
FT MONMOUTH NJ 07703

1 GPS JOINT PROG OFC DIR
COL J CLAY
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

1 ELECTRONIC SYS DIV DIR
CECOM RDEC
JNIEMELA
FT MONMOUTH NJ 07703

3 DARPA
L STOTTS
JPENNELLA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRLCSALTA
2800 POWDER MILL RD
ADELPHI MD 20783-1145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRLCILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIRUSARL
AMSRL CILP (305)

SPCL ASST TO WING CMNDR
50SW/CCX
CAPT P H BERNSTEIN
300 O'MALLEY AVE STE 20
FALCON AFB CO 80912-3020

USAF SMC/CED
DMA/JPO
MISON
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MDN A MAJ DON ENGEN
THAYERHALL
WEST POINT NY 10996-1786

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AL TP
2800 POWDER MUX RD
ADELPHI MD 20783-1145

22

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

12 DIR, USARL
ATTN: AMSRL-WM-M,

D. VIECHNICKI
AMSRL-WM-MD,

W.ROY
D. SHIRES (10 CP)

23

INTENTIONALLY LEFT BLANK.

24

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PüSicrapöTiingTjüräönTöTtriiiTöTi^^
gathering and maintaining tlwditoiMtdid,«ndeoinpMtngndnvlmlngtlwo>ll*elionolliiloiniallcn. Sard commantoraojrdtogthl« burden «atlmat» or any othar «apart olthla
collection of information, Including auggaetiona for radudng thla burden, to Waahkigton Haadquartara Service», Dlraetorata tor Information Operation» and Reports, 1216 Jefferson
Day!» Highway. Suit« 1204. Arlington. V* 22202-4302. and lo Iti« Office ot Manaoement and Budaat Paryywprt Reduction Prol«ctf0704-0mgt. Washington. PC 20503.
1. AGENCY USE ONLY ß^ave blank) 2. REPORT DATE

June 1997
3. REPORT TYPE AND DATES COVERED

Final, Nov 96 - Jan 97
4. TITLE AND SUBTITLE

Effects of Loop Unrolling and Loop Fusion on Register Pressure and Code
Performance

6. AUTHOR(S)

Dale Shires

5. FUNDING NUMBERS

78M841

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-WM-MD
Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-1386

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Many of today's high-performance computer processors are super-scalar. They can dispatch multiple instructions per
cycle and, hence, provide what is commonly referred to as instruction-level parallelism. This super-scalar capability,
combined with software pipelining, can increase processor throughput dramatically. Achieving maximum throughput,
however, is nontrivial. Compilers must engage in aggressive optimization techniques, such as loop unrolling,
speculative code motion, etc., to structure code to take full advantage of the underlying computer architecture. The
phase-ordering implications of these optimizations are not well understood and are the subject of continuing research.
Of particular interest are optimizations that enhance instruction-level parallelism. Two of these are loop unrolling and
loop fusion. These are source-level optimizations that can be performed by either the programmer or the compiler.
These optimizations have dramatic effects on the compiler's instruction scheduler. Performed too aggressively, these
optimizations can increase register pressure and result in costly memory references. This paper details experiments
performed to measure the effects of these source-level code transformations and how they influenced register pressure
and code performance.

14. SUBJECT TERMS

loop transformations, compiler optimization, register allocation, scheduling

15. NUMBER OF PAGES

23
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 754OO1-280-5500

25
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

26

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-1386 (Shires) Date of Report June 1997

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

Name E-mail Name

Street or P.O. Box No.

CURRENT
ADDRESS

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old
or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLWMMD
ABERDEEN PROVING GROUND MD 21005-5066

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

